4.1 Article Proceedings Paper

Body shape in terrestrial isopods: A morphological mechanism to resist desiccation?

Journal

JOURNAL OF MORPHOLOGY
Volume 276, Issue 11, Pages 1283-1289

Publisher

WILEY
DOI: 10.1002/jmor.20418

Keywords

woodlice; body size; allometry; water loss; functional morphology

Funding

  1. FRIA grant (Fonds pour la Recherche dans l'Industrie et dans l'Agriculture, FRS-FNRS)

Ask authors/readers for more resources

Woodlice are fully terrestrial crustaceans and are known to be sensitive to water loss. Their half-ellipsoidal shapes represent simple models in which to investigate theoretical assumptions about organism morphology and rates of exchange with the environment. We examine the influence of surface area and mass on the desiccation rates in three eco-morphologically different species of woodlice: Oniscus asellus, Porcellio scaber, and Armadillidium vulgare. Our analysis indicates that the rate of water loss of an individual depends on both the initial weight and the body surface area. Interspecific and intraspecific analyses show that the mass-specific water loss rate of a species decreases along with the ratio of surface area to volume. In particular, we show that body shape explains the difference in mass-specific water loss rates between A. vulgare and P. scaber. This observation also explains several known ecological patterns, for example, the distribution and survivorship of individuals. However, in addition to body size and shape, water loss in terrestrial isopods depends also on the coefficient of permeability (i.e., a measure of water loss rate per surface unit), which is high in O. asellus and lower (and at similar levels) in P. scaber and A. vulgare. We discuss morphological, physiological, and behavioral aspects of water loss avoidance in terrestrial isopods. J. Morphol. 276:1283-1289, 2015. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available