4.6 Article

Structural, optical and magnetic properties of Zn1-xMnxAl2O4 (0 ≤ x ≤ 0.5) spinel nanostructures by one-pot microwave combustion technique

Journal

JOURNAL OF MOLECULAR STRUCTURE
Volume 1084, Issue -, Pages 244-253

Publisher

ELSEVIER
DOI: 10.1016/j.molstruc.2014.12.054

Keywords

ZnAl2O4 spinels; Microwave combustion; Optical properties; Magnetic properties

Funding

  1. Congregation of Salesians of Don Bosco, Chennai Province
  2. Management of Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India

Ask authors/readers for more resources

Zn1-xMnxAl2O4 (0 <= x <= 0.5) spinel nanostructures were synthesized by urea assisted microwave combustion method. Structural, vibrational, morphological, optical and magnetic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (Fr-IR), high resolution scanning electron microscopy (HR-SEM), UV visible diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM) respectively. The XRD studies showed that the samples have pure cubic spinel phase, which is further validated by Rietveld refinement. The average crystallite size is of the nanoparticles estimated using Debey Scherrer's method was found to be in the range of 14-17 nm. The lattice parameter is increased from 8.089 to 8.160 angstrom with increasing in Mn2+ content. The William Hall (W-H) analysis was used to study the effects of lattice strain over the crystallite size. Increase in lattice parameter and increase in porosity were observed on increasing Mn2+ concentration FTIR spectra showed the vibrational stretching frequencies corresponding to the zinc aluminate spinels. The morphology of the samples depicted the formation of well developed nano-sized clusters with homogeneous well crystallized grains without any agglomerations. The optical band gap value of undoped zinc aluminate nanostructure is higher than the reported bulk zinc aluminate. The direct band gap estimated using Kubelka-Munk method decreased with increasing Mn2+ content (5.05-3.49 eV), due to the formation of sub bands in the energy gap. The photoluminescence characteristics of undoped and Mn2+ doped zinc aluminates are suggestive of defect controlled process and had an effect on the luminescence. Magnetic measurements revealed that the undoped ZnAl2O4 has diamagnetic behavior while the Mn2+ doped ZnAl2O4 system has superparamagnetic behavior. (C) 2014 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available