4.7 Article

Valorization of coarse rigid polyurethane foam waste in lightweight aggregate concrete

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 24, Issue 6, Pages 1069-1077

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2009.11.010

Keywords

Lightweight aggregate concrete; Polyurethane foam waste; Compressive strength; Permeability; Shrinkage; Chloride diffusion

Ask authors/readers for more resources

This study examines the mechanical properties and the durability parameters of lightweight aggregate concretes (LWAC) incorporating rigid polyurethane (PUR) foam waste as coarse aggregates (8/20 mm). The influence of both the increasing incorporation of FUR foam waste and the presence of superplasticizer on the workability, bulk density, mass loss, drying shrinkage, compressive strength, dynamic modulus of elasticity, total porosity, gas permeability and chloride diffusion coefficient of the different concretes, has been investigated and analyzed. The results showed that the use of FUR foam waste enabled to reduce by 29-36% the dry density of concrete compared to that of the normal weight concrete (made without foam waste). The reduction of density was due to the increase of total porosity in the lightweight concretes, which also induced higher gas permeability and chloride diffusion coefficient. These negative effects on durability of concrete were lowered by improving the characteristics of the cementitious matrix. The mechanical properties of the LWAC ranged between 8 and 16 MPa for the compressive strength and between 10 and 15 GPa for the dynamic modulus of elasticity; the concrete mixture with the higher performances almost satisfied the mechanical and density criteria of structural lightweight concrete. These results consolidate the idea of the use of PUR foam waste for the manufacture of lightweight aggregate concretes. (c) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available