4.3 Article Proceedings Paper

The use of approximate Bayesian computation in conservation genetics and its application in a case study on yellow-eyed penguins

Journal

CONSERVATION GENETICS
Volume 11, Issue 2, Pages 421-433

Publisher

SPRINGER
DOI: 10.1007/s10592-009-0032-9

Keywords

Approximate Bayesian computation; Historical demography; Likelihood-free; Isolation-Migration model; Megadyptes antipodes; Population genetics

Ask authors/readers for more resources

The inference of demographic parameters from genetic data has become an integral part of conservation studies. A group of Bayesian methods developed originally in population genetics, known as approximate Bayesian computation (ABC), has been shown to be particularly useful for the estimation of such parameters. These methods do not need to evaluate likelihood functions analytically and can therefore be used even while assuming complex models. In this paper we describe the ABC approach and identify specific parts of its algorithm that are being the subject of intensive studies in order to further expand its usability. Furthermore, we discuss applications of this Bayesian algorithm in conservation studies, providing insights on the potentialities of these tools. Finally, we present a case study in which we use a simple Isolation-Migration model to estimate a number of demographic parameters of two populations of yellow-eyed penguins (Megadyptes antipodes) in New Zealand. The resulting estimates confirm our current understanding of M. antipodes dynamic, demographic history and provide new insights into the expansion this species has undergone during the last centuries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available