4.4 Article

Molecular Mechanisms of the Action of Vitamin A in Th17/Treg Axis in Multiple Sclerosis

Journal

JOURNAL OF MOLECULAR NEUROSCIENCE
Volume 57, Issue 4, Pages 605-613

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12031-015-0643-1

Keywords

Multiple sclerosis; Vitamin A; Thelper 17 cell; Regulatory T cell

Ask authors/readers for more resources

Multiple sclerosis (MS) is an autoinflammatory disease of the central nervous system (CNS). The immunopathogenesis of this disease involves an impaired balance of T helper (Th) 17 cells and regulatory T (Tregs) cells. MS is an autoinflammatory disease characterized by the degeneration of the CNS. For many years, MS has been considered to be an autoreactive Th1 and Th17 cell-dominated disease. The activity and number of Th17 cells are increased in MS; however, the function and number of Treg cells are reduced. Therefore, in MS, the balance between Th17 cells and Treg cells is impaired. Th17 cells produce pro-inflammatory cytokines, which play a role in experimental autoimmune encephalomyelitis (EAE) and MS. However, Treg cell-mediated production of cytokines maintains immune homeostasis and can ameliorate the progression of MS. These observations, therefore, confirm the pathogenic and protective role of Th17 and Treg cells, respectively, and highlight the importance of maintaining the balance of both of these cell types. Evidence suggests that vitamin A and its active metabolites (all-trans-retinoic acid and 9-cis-retinoic acid) modulate the imbalance of Th17 and Treg cells through multiple molecular pathways and can be considered as a promising target in the prevention and treatment of MS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available