4.7 Article

Discrete modeling of strain accumulation in granular soils under low amplitude cyclic loading

Journal

COMPUTERS AND GEOTECHNICS
Volume 62, Issue -, Pages 232-243

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2014.07.015

Keywords

Granular soils; Cyclic loading; Low amplitude; High frequency; Strain accumulation; Discrete element method

Funding

  1. FWO [G.0397.09]

Ask authors/readers for more resources

An advanced understanding of the strain accumulation phenomenon in granular soils subjected to low amplitude cyclic loading with relatively high frequency is needed to enhance the ability to predict the settlement of granular soils induced by vibrations. In the current study, the discrete element method is used to study this phenomenon. A loose and a medium dense sample composed of a relatively large number of spheres are considered. A series of stress controlled cyclic triaxial tests with different excitation amplitudes and frequencies is performed on these samples at different static stress states. The response of these samples at the macroscopic and microscopic scales is analyzed. The sample density, the cyclic stress amplitude and the static stress state importantly affect strain accumulation. However, the cyclic excitation frequency has a small effect on strain accumulation. At the microscopic scale, frictional sliding occurring at a few contacts continuously dissipates energy and the fraction of these contacts varies periodically during cyclic loading. The coordination number of these samples increases slightly as strain accumulates. However, the anisotropy remains almost constant during low amplitude cyclic excitation. A qualitatively good agreement between numerical and experimental results is found. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available