4.7 Article

Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model

Journal

COMPUTERS AND GEOTECHNICS
Volume 35, Issue 3, Pages 313-322

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2007.09.006

Keywords

artificial neural network; concrete-faced rockfill dam; relative crest settlement; conventional calculation methods; regression analysis

Ask authors/readers for more resources

A neural network model has been developed for the prediction of relative crest settlement (RCS) of concrete-faced rockfill dams (CFRDs) using 30 databases of field data from seven countries (of which 21 were used for training and 9 for testing). The settlement values predicted using the optimum artificial neural network (ANN) model are in good agreement with these field data. A database prepared from reported crest settlement values of CFRDs after construction was used to train the ANN model to predict the RCS. It is demonstrated here that the model is capable of predicting accurately the relative crest settlement of CFRDs and is potentially applicable for general usage with knowledge of the three basic properties of a dam (void ratio, e; height, H; and vertical deformation modulus, E-V). The performance of the new ANN model is compared with that of conventional methods based on the Clements theory and also with that of a proposed equation derived from the field data. The comparison indicates that the ANN model has strong potential and offers better performance than conventional methods when used as a quick interpolation and extrapolation tool. The conventional calculation model was proposed based on the fixed connection weights and bias factors of the optimum ANN structure. This method can support the dam engineer in predicting the relative crest settlement of a CFRD after impounding. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available