4.7 Article

Adaptive explicit decision functions for probabilistic design and optimization using support vector machines

Journal

COMPUTERS & STRUCTURES
Volume 86, Issue 19-20, Pages 1904-1917

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2008.02.008

Keywords

support vector machines; explicit decision functions; discontinuities; disjoint failure regions; optimization; probabilistic design

Ask authors/readers for more resources

This article presents a methodology to generate explicit decision functions using support vector machines (SVM). A decision function is defined as the boundary between two regions of a design space (e.g., an optimization constraint or a limit-state function in reliability). The SVM-based decision function, which is initially constructed based on a design of experiments, depends on the amount and quality of the training data used. For this reason, an adaptive sampling scheme that updates the decision function is proposed. An accurate approximated explicit decision functions is obtained with a reduced number of function evaluations. Three problems are presented to demonstrate the efficiency of the update scheme to explicitly reconstruct known analytical decision functions. The chosen functions are the boundaries of disjoint regions of the design space. A convergence criterion and error measure are proposed. The scheme is also applied to the definition of an explicit failure region boundary in the case of the buckling of a geometrically nonlinear arch. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available