4.7 Article

Axioms of adaptivity

Journal

COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volume 67, Issue 6, Pages 1195-1253

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.camwa.2013.12.003

Keywords

Finite element method; Boundary element method; A posteriori error estimators; Local mesh-refinement; Optimal convergence rates; Iterative solvers

Funding

  1. Austrian Science Fund (FWF) [P21732, W1245]
  2. Viennese Science and Technology Fund (WWTF) [MA09-29]
  3. Austrian Science Fund (FWF) [W1245] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available