4.7 Article

LMI stability conditions for fractional order systems

Journal

COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volume 59, Issue 5, Pages 1594-1609

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.camwa.2009.08.003

Keywords

Fractional systems; Stability; Linear Matrix Inequalities

Ask authors/readers for more resources

After an overview of the results dedicated to stability analysis of systems described by differential equations involving fractional derivatives, also denoted fractional order systems, this paper deals with Linear Matrix Inequality (LMI) stability conditions for fractional order systems. Under commensurate order hypothesis, it is shown that a direct extension of the second Lyapunov's method is a tedious task. If the fractional order v is such that 0 nu < 1, the stability domain is not a convex region of the complex plane. However, through a direct stability domain characterization, three LMI stability analysis conditions are proposed. The first one is based on the stability domain deformation and the second one on a characterization of the instability domain (which is convex). The third one is based on generalized LMI framework. These conditions are applied to the gain margin computation of a CRONE suspension. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available