4.7 Article

A new operational matrix for solving fractional-order differential equations

Journal

COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volume 59, Issue 3, Pages 1326-1336

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.camwa.2009.07.006

Keywords

Fractional-order differential equations; Operational matrix; Legendre polynomials; Collocation method; Caputo derivative

Ask authors/readers for more resources

Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equations. The fractional derivatives are described in the Caputo sense. Our main aim is to generalize the Legendre operational matrix to the fractional calculus. In this approach, a truncated Legendre series together with the Legendre operational matrix of fractional derivatives are used for numerical integration of fractional differential equations. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus greatly simplifying the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the presented technique. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available