4.5 Article

Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach

Journal

COMPUTERS & FLUIDS
Volume 39, Issue 1, Pages 25-48

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2009.07.001

Keywords

-

Funding

  1. European Commission [ENK6-CT-2002-00616]

Ask authors/readers for more resources

Cycle to cycle variations are an important aspect in the development and optimization process of internal combustion engines. In this study the feasibility of using a detached eddy simulation (DES) SST model, which is a hybrid URANS/LES model, to predict cycle to cycle variations is investigated. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS shear-stress transport (SST) model is used. In the other regions with higher grid resolution an LES model is applied. First, the numerical requirements associated with the hybrid URANS/LES and the employed solver are studied in detail. The numerical dissipation of the spatial scheme and the choice of the temporal scheme including the step size are evaluated. In addition, the accuracy of the solver for moving meshes, which are required for engine calculations, is assessed. The modeling constant linking the grid size to the DES filter length scale is determined by calculating a decaying homogeneous isotropic turbulence test case for different grid resolutions. The final applications of the model are two different engine cases with increasing complexity. The first case is the statistically stationary flow through an engine intake port. The time resolved flow structure predicted by the DES SST model is analyzed and the resulting time-averaged velocity fields are compared to experimental data at different locations. The second application is a motored multi-cycle simulation of a series production engine. The instantaneous flow development during the intake and compression stroke of one single cycle is studied and the ensemble-averaged and the instantaneous velocity fields as well as the resolved velocity fluctuations are compared to optical measurements. Special emphasis is placed on the cyclic differences of the velocity fluctuations at the time of ignition in the vicinity of the spark plug and the expected influence on the combustion process. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available