4.5 Article

Flow characteristics of two rotating side-by-side circular cylinder

Journal

COMPUTERS & FLUIDS
Volume 38, Issue 2, Pages 466-474

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2008.09.002

Keywords

-

Funding

  1. Advanced Ship Engineering Research Center (ASERC) of Pusan National University through Korea Science and Engineering Foundation

Ask authors/readers for more resources

This paper presents a numerical investigation of the characteristics of the two-dimensional laminar flow around two rotating circular cylinders in side-by-side arrangements. In order to consider the combined effects of the rotation and the spacing between two cylinders on the now, numerical simulations are performed at a various range of absolute rotational speeds (|alpha| <= 2) for four different gap spacings of 3, 1.5. 0.7 and 0.2 at Reynolds number of 100 showing the typical two-dimensional vortex shedding, As |alpha| increases, the flow changes its condition from periodic to steady after a critical rotational speed, which depends on the gap spacing. In the cases of gap spacings of 3 and 0.2, the wake keeps the same pattern, until flow reaches the steady state, However, for the gap spacings of 1.5 and 0.7, the wake patterns change in the unsteady regimes. For the cases in which the flow is unsteady, the Strouhal number strongly depends on the gap. For a fixed gap spacing, the variation of the Strouhal number is significant when the wake pattern is changed according to the rotational speed. Regardless of the gap spacing, as |alpha| increases, the lift increases and the drag decreases. Quantitative information about the flow variables such as the pressure coefficient and wall vorticity distributions on the cylinders is highlighted. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available