4.7 Article

Reference-free damage classification based on cluster analysis

Ask authors/readers for more resources

Fiber-reinforced polymer (FRP) composite materials have been widely used for retrofitting civil infrastructure systems. The ultimate goal of this study was to develop an in-site non-destructive testing (NDT) technique that can continuously and autonomously inspect the bonding condition between a carbon FRP (CFRP) layer and a host reinforced concrete (RC) structure, when the CRFP layer is used for strengthening the RC structure. The uniqueness of this reference-free NDT is two-fold: First, features, which are sensitive to CFRP debonding but insensitive to operational and environmental variations of the structure, have been extracted only from current data without direct comparison with previously obtained baseline data. Second, damage classification is performed instantaneously without relying on predetermined decision boundaries. The extraction of the reference-free features is accomplished based on the concept of time reversal acoustics, and the instantaneous decision-making is achieved using cluster analysis. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring technique. Based on the experimental studies, it has been shown that the proposed reference-free NDT technique may minimize false alarms of debonding and unnecessary data interpretation by end users.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available