4.7 Article

Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units

Journal

COMPUTER PHYSICS COMMUNICATIONS
Volume 182, Issue 11, Pages 2307-2313

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cpc.2011.06.005

Keywords

GPU; GPGPU; CUDA; Molecular dynamics; Rigid body

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-02ER46000]
  2. U.S. Department of Energy
  3. DOD/DDRE under the National Security Science & Engineering Faculty [N00244-09-1-0062]
  4. James S. McDonnell Foundation

Ask authors/readers for more resources

Molecular dynamics (MD) methods compute the trajectory of a system of point particles in response to a potential function by numerically integrating Newton's equations of motion. Extending these basic methods with rigid body constraints enables composite particles with complex shapes such as anisotropic nanoparticles, grains, molecules, and rigid proteins to be modeled. Rigid body constraints are added to the GPU-accelerated MD package, HOOMD-blue, version 0.10.0. The software can now simulate systems of particles, rigid bodies, or mixed systems in microcanonical (NVE), canonical (NVT), and isothermal-isobaric (NPT) ensembles. It can also apply the FIRE energy minimization technique to these systems. In this paper, we detail the massively parallel scheme that implements these algorithms and discuss how our design is tuned for the maximum possible performance. Two different case studies are included to demonstrate the performance attained, patchy spheres and tethered nanorods. In typical cases, HOOMD-blue on a single GTX 480 executes 2.5-3.6 times faster than LAMMPS executing the same simulation on any number of CPU cores in parallel. Simulations with rigid bodies may now be run with larger systems and for longer time scales on a single workstation than was previously even possible on large clusters. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available