4.3 Article

An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255842.2011.616945

Keywords

heart rate; diabetes; classifier; correlation dimension; recurrence plot; Poincare geometry

Ask authors/readers for more resources

Electrocardiogram (ECG) signals are difficult to interpret, and clinicians must undertake a long training process to learn to diagnose diabetes from subtle abnormalities in these signals. To facilitate these diagnoses, we have developed a technique based on the heart rate variability signal obtained from ECG signals. This technique uses digital signal processing methods and, therefore, automates the detection of diabetes from ECG signals. In this paper, we describe the signal processing techniques that extract features from heart rate (HR) signals and present an analysis procedure that uses these features to diagnose diabetes. Through statistical analysis, we have identified the correlation dimension, Poincare geometry properties (SD2), and recurrence plot properties (REC, DET, L mean) as useful features. These features differentiate the HR data of diabetic patients from those of patients who do not have the illness, and have been validated by using the AdaBoost classifier with the perceptron weak learner (yielding a classification accuracy of 86%). We then developed a novel diabetic integrated index (DII) that is a combination of these nonlinear features. The DII indicates whether a particular HR signal was taken from a person with diabetes. This index aids the automatic detection of diabetes, thereby allowing a more objective assessment and freeing medical professionals for other tasks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available