4.3 Article

A finite element model of stress-mediated vascular adaptation: application to abdominal aortic aneurysms

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255842.2010.495344

Keywords

arterial growth and remodelling; computational vascular mechanics; modelling cardiovascular diseases; patient-specific modelling

Ask authors/readers for more resources

Despite rapid expansion of our knowledge of vascular adaptation, developing patient-specific models of diseased arteries is still an open problem. In this study, we extend existing finite element models of stress-mediated growth and remodelling of arteries to incorporate a medical image-based geometry of a healthy aorta and, then, simulate abdominal aortic aneurysm. Degradation of elastin initiates a local dilatation of the aorta while stress-mediated turnover of collagen and smooth muscle compensates the loss of elastin. Stress distributions and expansion rates during the aneurysm growth are studied for multiple spatial distribution functions of elastin degradation and kinetic parameters. Temporal variations of the degradation function are also investigated with either direct time-dependent degradation or stretch-induced degradation as possible biochemical and biomechanical mechanisms for elastin degradation. The results show that this computational model has the capability to capture the complexities of aneurysm progression due to variations of geometry, extent of damage and stress-mediated turnover as a step towards patient-specific modelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available