4.3 Article

Three-dimensional cerebrospinal fluid flow within the human ventricular system

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255840701492118

Keywords

cerebrospinal fluid; ventricular system; computational fluid dynamics; central nervous system

Ask authors/readers for more resources

Cerebrospinal fluid (CSF) is a Newtonian fluid and can, therefore, be modelled using computational fluid dynamics (CFD). Previous modelling of the CSF has been limited to simplified geometric models. This work describes a geometrically accurate three dimensional (3D) computational model of the human ventricular system (HVS) constructed from magnetic resonance images (MRI) of the human brain. It is an accurate and full representation of the HVS and includes appropriately positioned CSF production and drainage locations. It was used to investigate the pulsatile motion of CSF within the human brain. During this investigation CSF flow rate was set at a constant 500 ml/day, to mimic real life secretion of CSF into the system, and a pulsing velocity profile was added to the inlets to incorporate the effect of cardiac pulsations on the choroid plexus and their subsequent influence on CSF motion in the HVS. Boundary conditions for the CSF exits from the ventricles (foramina of Magendie and Lushka) were found using a nesting approach, in which a simplified model of the entire central nervous system (CNS) was used to examine the effects of the CSF surrounding the ventricular system (VS). This model provided time varying pressure data for the exits from the VS nested within it. The fastest flow was found in the cerebral aqueduct, where a maximum velocity of 11.38 mm/s was observed over five cycles. The maximum Reynolds number recorded during the simulation was 15 with an average Reynolds number of the order of 0.39, indicating that CSF motion is creeping flow in most of the computational domain and consequently will follow the geometry of the model. CSF pressure also varies with geometry with a maximum pressure drop of 1.14Pa occurring through the cerebral aqueduct. CSF flow velocity is substantially slower in the areas that are furthest away from the inlets; in some areas flow is nearly stagnant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available