4.7 Article

Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel

Journal

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Volume 198, Issue 37-40, Pages 2936-2949

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2009.04.010

Keywords

Earthquake; Particle swarm optimization; Neural network; Adaptive neuro-fuzzy inference system; Subtractive algorithm; Self-organizing map; Radial basis function

Ask authors/readers for more resources

This paper proposes a new metamodeling framework that reduces the computational burden of the structural optimization against the time history loading. In order to achieve this, two strategies are adopted. In the first strategy, a novel metamodel consisting of adaptive neuro-fuzzy inference system (ANFIS), subtractive algorithm (SA), self organizing map (SOM) and a set of radial basis function (RBF) networks is proposed to accurately predict the time history responses of structures. The metamodel proposed is called fuzzy self-organizing radial basis function (FSORBF) networks. In this study, the most influential natural periods on the dynamic behavior of structures are treated as the inputs of the neural networks. In order to find the most influential natural periods from all the involved ones, ANFIS is employed. To train the FSORBF, the input-output samples are classified by a hybrid algorithm consisting of SA and SOM clusterings, and then a RBF network is trained for each cluster by using the data located. in the second strategy, particle swarm optimization (PSO) is employed to find the optimum design. Two building frame examples are presented to illustrate the effectiveness and practicality of the proposed methodology. A plane steel shear frame and a realistic steel space frame are designed for optimal weight using exact and approximate time history analyses. The numerical results demonstrate the efficiency and computational advantages of the proposed methodology. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available