4.7 Article

Extended finite element method on polygonal and quadtree meshes

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2007.08.013

Keywords

partition of unity; discontinuous enrichment; natural neighbors; Voronoi tessellation; nonconvex polygons; fracture; crack growth

Ask authors/readers for more resources

In this paper, we present mesh-independent modeling of discontinuous fields on polygonal and quadtree finite element meshes. This approach falls within the class of extended and generalized finite element methods, where the partition of unity framework is used to introduce additional (enrichment) functions within the classical displacement-based finite element approximation. For crack modeling, a discontinuous function and the two-dimensional asymptotic crack-tip fields are used as enrichment functions. Linearly complete partition of unity approximations are adopted on polygonal (convex and nonconvex elements) and quadtree meshes. Excellent agreement with reference solution results is obtained for mixed-mode stress intensity factors on benchmark crack problems, and crack growth simulations without remeshing are conducted on polygonal and quadtree meshes to reveal the potential of the proposed techniques in computational failure mechanics. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available