4.7 Article

Multi-length scale micromorphic process zone model

Journal

COMPUTATIONAL MECHANICS
Volume 44, Issue 3, Pages 433-445

Publisher

SPRINGER
DOI: 10.1007/s00466-009-0382-7

Keywords

Multiscale micromorphic theory; Fracture mechanics; Materials design; Ductile failure; Multi-length scale finite elements

Funding

  1. ONR/DARPA D3D Digital Structure Consortium [N00014-05-C-0241]
  2. National Science Foundation
  3. Department of Energy (NSF/Sandia Program)

Ask authors/readers for more resources

The prediction of fracture toughness for hierarchical materials remains a challenging research issue because it involves different physical phenomena at multiple length scales. In this work, we propose a multiscale process zone model based on linear elastic fracture mechanics and a multiscale micromorphic theory. By computing the stress intensity factor in a K-dominant region while maintaining the mechanism of failure in the process zone, this model allows the evaluation of the fracture toughness of hierarchical materials as a function of their microstructural properties. After introducing a multi-length scale finite element formulation, an application is presented for high strength alloys, whose microstructure typically contains two populations of particles at different length scales. For this material, the design parameters comprise of the strength of the matrix-particle interface, the particle volume fraction and the strain-hardening of the matrix. Using the proposed framework, trends in the fracture toughness are computed as a function of design parameters, showing potential applications in computational materials design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available