4.5 Article

First-principles studies of the electronic and elastic properties of metal nitrides XN (X = Sc, Ti, V, Cr, Zr, Nb)

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 51, Issue 1, Pages 380-388

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2011.08.008

Keywords

Electronic band structure; Optical properties; Elastic properties

Funding

  1. European Social Fund's Doctoral Studies and Internationalisation Programme
  2. European Social Fund [GLOFY054MJD]

Ask authors/readers for more resources

Electronic and elastic properties of a series of the transition metal ion mononitrides (ScN, TiN, VN, CrN, ZrN, NbN) have been modeled in the framework of ab initio plane wave spin-polarized calculations using the generalized gradient and local density approximations. The calculated band structures are typical for metallic compounds, except for ScN, whose band structure is that one of the gapless semiconductor. Strongly delocalized d states of transition metal ions are spread over a wide region of about 10-12 eV and are strongly hybridized with the nitrogen 2p states. Among the considered nitrides, only CrN exhibits a clear difference between the spin-up and spin-down states, which would manifest itself in magnetic properties. The overall appearance of the calculated cross-sections of the electron density difference changes drastically when going from Sc to Nb in the considered series of compounds. For the first time the calculated tensors of the elastic constants and elastic compliance constants were used for the analysis and visualization of the directional dependence of the Young's moduli. It was shown that ScN and VN can be characterized as more or less elastically isotropic materials, whereas in TiN, CrN, ZrN, and NbN the Young's moduli vary significantly in different directions. The maximal values of the Young's moduli are along the crystallographic axes, the minimal values are along the bisector direction in the coordinate planes; the difference between them in the case of CrN exceeds one order of magnitude. In addition, pressure dependence of the metal - nitrogen distance was modeled. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available