4.5 Article

Parameter determination of Chaboche kinematic hardening model using a multi objective Genetic Algorithm

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 50, Issue 3, Pages 1114-1122

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2010.11.010

Keywords

Chaboche model; Kinematic hardening; Ratcheting; Hysteresis loop; Genetic Algorithm; Uniaxial and biaxial loading

Ask authors/readers for more resources

Chaboche model is a powerful tool to evaluate the cyclic behavior under different loading conditions using kinematic hardening theory. It can also predict the ratcheting phenomenon. To predict the ratcheting, it is required to determine the material parameters under strain control conditions. Although, these parameters can model the hysteresis loop fairly accurately, their ratcheting prediction does not have the same quality. A set of material parameters that could accurately predict both ratcheting and hysteresis loop is of great importance. The available models, generally for low cycle fatigue, are mostly complex and nonlinear. Therefore, an optimization procedure can be used for parameter determination and consequently improving the prediction of these models. Genetic Algorithm is a numerical approach for optimization of nonlinear problems. Using a multi objective Genetic Algorithm for Chaboche model, a set of parameters was obtained which improved both ratcheting prediction and hysteresis loop model. Two fitness functions were used for this approach. The proposed model was verified using Hassan and Corona's experimental data conducted on CS 1026 low carbon steel. The model indicated a very good agreement in the case of uniaxial loading with the experimental data. The results of proposed model for biaxial loading histories are similar to the model by Hassan and his co-workers. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available