4.5 Article

Molecular dynamics study of effects of intertube spacing on sliding behaviors of multi-walled carbon nanotube

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 50, Issue 3, Pages 971-974

Publisher

ELSEVIER
DOI: 10.1016/j.commatsci.2010.10.035

Keywords

Carbon nanotube; Sliding behavior; Molecular dynamics simulation

Funding

  1. National Natural Science Foundation of China [10902083]

Ask authors/readers for more resources

The effects of intertube spacing, tube length and wall numbers on the sliding behaviors of multi-walled carbon nanotubes (MWCNTs) are investigated using molecular dynamics (MD) simulation method. The interaction between carbon atoms is modeled using the second-generation reactive empirical bond-order potential coupled with the Lennard-Jones potential. The simulations indicate that, regardless of tube length and wall numbers, small intertube spacing of MWCNT can provides an effective channel for load transfer between tubes, and permits mechanical participation of walls. The results also show that the sliding behaviors of MWCNT are strongly dependent of tube length and wall numbers, especially MWCNT with small intertube spacing. It is observed that small intertube spacing of triple-walled carbon nanotube (TWCNT) result in the formation of intertube sp3 bonds during pullout process. The general conclusions derived from this work may be of importance in devising high-performance carbon nanotube (CNT) composites. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available