4.5 Article

A DFT study of VO43- polyanion substitution into the Li-ion battery cathode material Li2FeSiO4

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 50, Issue 1, Pages 191-197

Publisher

ELSEVIER
DOI: 10.1016/j.commatsci.2010.07.025

Keywords

Li-ion battery; Positive electrode material; Silicates; DFT calculations; Polyanion; Crystal structure; Redox activity

Funding

  1. Stanford University
  2. Swedish National Infrastructure for Computing (SNIC)
  3. Estonian Science Foundation [ETF7583]

Ask authors/readers for more resources

Density Functional Theory (DFT) has here been used to study the substitution of SiO44- for VO43- polyanions in the orthosilicate Li-ion battery cathode material Li2FeSiO4, in order to enhance electron transfer between the TM-ions and thereby achieve a capacity increase from the potential redox activity of the orthovanadate polyanion. Comparison of results for five different model structures for LiFeXO4, X = Si, P and V, reveals that VO43- substitution destabilizes the tetrahedral structures towards olivine- or spinel-type structures. Our modelling of lithiation of the hypothetical 100% substituted system LiFeVO4 to Li2FeVO4 predicts the reduction of V5+ in the VO43- anion to V4+ at a potential of 2.1 V. While complete delithiation of LiFeVO4 to FeVO4 is accompanied by Fe2+/Fe3+ oxidation at similar to 3.1 V. These lithiation and delithiation processes trigger changes in the unit-cell volume: -6% and +10%, respectively. Notably, only minor structural distortions were observed in both VO43- and the more exotic VO44- tetrahedra. Thermodynamically feasible VO43- substitution levels are also shown to be <30%. This is exemplified for a 12.5% VO4-substituted system which exhibits similar to 50% smaller band-gap and increased capacity at an average deintercalation potential of similar to 3.2 V compared to the un-substituted system. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available