4.7 Article

A mechanism-based multi-scale model for predicting thermo-oxidative degradation in high temperature polymer matrix composites

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 71, Issue 10, Pages 1309-1315

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2011.04.018

Keywords

Polymer matrix composites (PMCs); Creep; Finite element analysis (FEA); Life prediction

Funding

  1. NASA [NRA-NNH06ZEA001N]

Ask authors/readers for more resources

This paper describes a mechanism-based multi-scale model for life prediction of high temperature polymer matrix composites (HTPMC) under thermo-oxidative aging conditions. The multi-scale model incorporates molecular level damage such as inter-crosslink chain scission in a thermoset polymer due to thermo-oxidative aging of the polymer resin. The degradation of inter-laminar stress depends on remaining inter-crosslink density of thermo-set polymer in fiber/matrix interface region subjected to thermo-oxidative aging environment. The degradation of inter-laminar shear stress of thermo-oxidatively aged unidirectional IM-7/PETI-5 composite specimens at 300 degrees C was modeled using an in-house test-bed FEA code (NOVA-3D). A micromechanics based viscoelastic cohesive layer model was used to model delamination. The model is fully rate dependent and does not require a pre-assigned traction-separation law. Viscoelastic regularization of the constitutive equations of the cohesive layer used in this model not only mitigates numerical instability, but also enables the analysis to follow load-deflection behavior beyond peak failure load. The model was able to successfully simulate delamination failure in thermo-oxidatively aged unidirectional IM-7/PETI-5 composite, and the model predictions were verified using test data. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available