4.7 Article

Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: Thermal, physical and mechanical properties

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 70, Issue 3, Pages 504-509

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2009.12.001

Keywords

Bio-based polyamides; Short-fibre composites; Thermal properties; Elastic properties; Modelling

Ask authors/readers for more resources

Dimer fatty acid-based polyamides (DAPA) are reinforced with cellulose fibres (CF) from 5 to 20 wt.%. Thermal, morphological, dynamic mechanical and mechanical properties of the corresponding biocomposites (DAPAC) are investigated. They exhibit a high increase in glass transition temperature (T-g) and a decrease in the crystallisation temperature and crystallinity degree. This can be attributed to carbonyl (DAPA) and hydroxyl (CP) groups' interactions. These hydrogen bonds reduce the polymer mobility. For instance, the dynamic mechanical spectra of these biocomposites reveal an increase in the stiffness and higher thermal-mechanical stability. Morphological observations reveal a moderate interfacial adhesion between the fibres and the matrix. With the increase of the fibre content, tensile tests show a high increase in Young modulus and yield stress, and a decrease of elongation at break. Predicted modulus results based on micromechanical models, Voigt and Reuss bounds and Halpin-Tsai approaches, are compared with the experimental values. They show that the Halpin-Tsai model can be used to quantify the mechanical properties for DAPA/CF biocomposites. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available