4.7 Article

Reduced water vapour sorption in cellulose nanocomposites with starch matrix

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 69, Issue 3-4, Pages 500-506

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2008.11.016

Keywords

Nanocomposites; Modelling; Moisture diffusion

Ask authors/readers for more resources

The effects of microfibrillated cellulose nanofibers from wood on the moisture sorption kinetics (30% RH) of glycerol plasticized and pure high-amylopectin starch films were studied. The presence of a nanofiber network (70 wt% cellulose nanofibers) reduced the moisture uptake to half the value of the pure plasticized starch film. The swelling yielded a moisture concentration-dependent diffusivity. Quite surprisingly, the moisture diffusivity decreased rapidly with increasing nanofiber content and the diffusivity of the neat cellulose network was, in relative terms, very low. It was possible to describe the strong decrease in zero-concentration diffusivity with increasing cellulose nanofiber/matrix ratio, simply by assuming only geometrical blocking using the model due to Aris. The adjusted model parameters suggested a simplified composite structure with dense nanofiber layers oriented in the plane of the film. Still, also constraining effects on swelling from the high modulus/hydrogen bonding cellulose network and reduced amylopectin molecular mobility due to strong starch-cellulose molecular interactions were suggested to contribute to the reductions in moisture diffusivity. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available