4.7 Article Proceedings Paper

Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 69, Issue 11-12, Pages 1756-1763

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2008.10.005

Keywords

Nanocomposites; Mechanical properties; Rheology; Scanning electron microscopy (SEM); Transmission electron microscopy (TEM)

Ask authors/readers for more resources

Polypropylene (PP)/multi-wall carbon nanotubes (MWNTs) nanocomposites were prepared by diluting a PP/MWNT masterbatch by melt compounding with a twin screw extruder and prepared nanocomposites were characterized for their theological, mechanical and morphological properties in terms of MWNT loading. The rheological results showed that the materials experience a fluid-solid transition at the composition of 2 wt.%, beyond which a continuous MWNT network forms throughout the matrix and in turn promotes the reinforcement. The tensile modulus and yield stress of the nanocomposites are substantially increased relative to the neat polypropylene. Nanotube reinforcement thus enhanced the yield stress, while reducing the ductility. The same behavior is observed in flexural tests. Charpy impact resistance of the notched samples increases slightly by the addition of MWNT, while impact resistance for the un-notched samples decreases with the addition of MWNTs. Finally, optimum in mechanical properties was observed at 2 wt.% MWNTs, which is near the theological percolation threshold. From transmission electron microscopic (TEM) and scanning electron microscopy (SEM) images, it was observed that nanotubes are distributed reasonably uniformly indicating a good dispersion of nanotubes in the PP matrix. These results reveal that, preparation of nanocomposites from masterbatch dilution is an excellent method to obtain well-dispersed CNTs, while limiting the handling difficulties in plastics processing industrial workshops. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available