4.7 Article

Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 68, Issue 3-4, Pages 829-839

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2007.08.023

Keywords

polymer-matrix composites; mechanical properties; modeling; failure criterion

Ask authors/readers for more resources

The failure locus a fiber-reinforced composite lamina, made up of 50 vol.% of carbon fibers embedded in an epoxy matrix, is computed under transverse compression and out-of-plane shear, a stress state whose experimental reproduction is highly complex. The mechanical response was obtained by the finite element method of a representative volume element of the lamina, which explicitly takes into account the fibers and the matrix in the lamina. The actual deformation and failure mechanisms experimentally observed in the matrix, fibers and interfaces were included in the simulations through the appropriate constitutive equations. Two sets of simulations were performed, assuming that the fiber/matrix interface was either strong or weak. The corresponding failure loci were compared with those given by three failure criteria for composites (Hashin, Puck and LaRC) which provide reasonable predictions in other multiaxial stress states. The estimations of the failure criteria were largely consistent with the numerical simulations in the composites with a strong interface but overestimated the composite strength when the interface was weak because the effect of interface decohesion (which becomes dominant) was not taken into account. These results point out the need to include interface fracture in the failure criteria for corriposites. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available