4.7 Article

Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation

Journal

COMPOSITES PART B-ENGINEERING
Volume 155, Issue -, Pages 244-256

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2018.08.042

Keywords

Vibration; Magneto-electro-viscoelastic; Functionally graded; Porosity; Nanobeam; Viscoelastic medium

Funding

  1. National Natural Science Foundation of China [11472035]

Ask authors/readers for more resources

In this paper, the size-dependent vibrational behaviors of functionally graded (FG) magneto-electro-viscoelastic nanobeams in the presence of porosities and embedded in the viscoelastic medium are studied based on the nonlocal Timoshenko beam theory in conjunction with the Kelvin-Voigt viscoelastic model. The viscoelastic medium is modeled as a visco-Pasternak foundation with consideration of both shear modulus and medium damping coefficient. The FG material properties are supposed to vary along the thickness direction in a power law exponent form, and two types of porosity distributions are considered. The present model is validated by comparison with several existing theories and a good agreement is achieved. Parametric studies are carried out to investigate the coupling influences of the nonlocal parameter, FG power-law index, porosity volume fraction, porosity distribution, boundary condition, structural damping coefficient and viscoelastic foundation parameters, as well as electric voltage and magnetic potential on the vibrational performance of FG magneto-electro-viscoelastic porous nanobeams. The results are helpful for the design and applications of nano-electro-mechanical systems (NEMS).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available