4.7 Article

Fire protection systems for building floors made of pultruded GFRP profiles - Part 2: Modeling of thermomechanical responses

Journal

COMPOSITES PART B-ENGINEERING
Volume 41, Issue 8, Pages 630-636

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2010.09.019

Keywords

Polymer-matrix composites; High-temperature properties; Pultrusion; Thermomechanical responses

Funding

  1. Swiss National Science Foundation [200020-117592/1]
  2. FCT [PTDC/ECM/100779/2008]
  3. ICIST
  4. Fundação para a Ciência e a Tecnologia [PTDC/ECM/100779/2008] Funding Source: FCT

Ask authors/readers for more resources

A recently developed thermomechanical model to predict the time-dependent thermal and mechanical responses of pultruded glass fiber-reinforced polymer (GFRP) profiles subjected to fire was extended to include the beneficial effects of passive fire protection systems. The model extension was validated by comparing predicted and measured thermomechanical responses of pultruded GFRP tubes subjected to four-point bending and exposed to an ISO834 fire from their underside. The profiles were protected using passive and active methods, including a calcium silicate board, a vermiculite/perlite-based mortar, and a water-cooling system. Variations resulted mainly from the unavailability of accurate time-dependent thermophysical properties for the protection materials. The benefits provided by the fire protection systems could be quantified and the model therefore can be used for the selection and design of passive fire protection measures. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available