4.7 Article

3D printing of composite sandwich structures using continuous carbon fiber and fiber tension

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2018.07.029

Keywords

Carbon fibres; Honeycomb; 3-D Printing; Automation

Funding

  1. Ministry of Economy, Trade and Industry of Japan through the Supporting Industries program

Ask authors/readers for more resources

Many modern aircraft components are made from carbon fiber reinforced polymer sandwich structures with two outer skins possessing high tensile and compressive strengths separated by a lightweight core that provides shear stiffness. However, the conventional manufacturing method involves a complicated and costly bonding process. This study used a continuous carbon fiber 3D printer to manufacture sandwich structures with honeycomb, rhombus, rectangle, and circle core shapes as a single piece. The functional properties of the sandwich structures were quantified by shape evaluations and three-point bending tests. Three-point bending tests showed maximum load and flexural modulus increased as effective density increased for all core shapes, but the rhombus core shape was the strongest. Because the mechanical properties depended on the core shape, continuous carbon fiber 3D printers can be used to flexibly design core shapes that satisfy the desired strength and stiffness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available