4.7 Article

Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2013.10.009

Keywords

Particle-reinforcement; Mechanical properties; Surface treatments

Funding

  1. Deakin University Publication Scholarships

Ask authors/readers for more resources

Uniform treatment of multiwalled carbon nanotubes by plasma treatment has been investigated using a custom-built stirring plasma system. A thin plasma polymer with high levels of amine groups has been deposited on MWCNTs using a combination of continuous wave and pulsed plasma polymerization of heptylamine in the stirring plasma system. Scanning electron microscopy showed that the plasma polymerization improved the dispersion and interfacial bonding of the MWCNTs with an epoxy resin at loadings of 0.1, 0.3 and 0.5 wt%. The flexural and thermal mechanical properties of plasma polymerized MWCNT/epoxy nanocomposites were also significantly improved while untreated MWCNT/epoxy nanocomposites showed an opposite trend. The epoxy with 0.5 wt% plasma polymerized MWCNTs had the greatest increase in flexural properties, with the flexural modulus, flexural strength and toughness increasing by about 22%, 17% and 70%, respectively. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available