4.1 Review

The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives

Journal

JOURNAL OF MEMBRANE BIOLOGY
Volume 249, Issue 1-2, Pages 11-21

Publisher

SPRINGER
DOI: 10.1007/s00232-015-9860-3

Keywords

F1FO-ATP synthase; c-Ring, mitochondria; Bioenergetic cost; Drug-binding region; Mitochondrial permeability transition

Ask authors/readers for more resources

The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded F-O domain: (i) the c-ring constitution is linked to the number of ions (H+ or Na+) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the molecular currency unit of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme's potential role as a drug target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available