4.7 Article

A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core

Journal

COMPOSITE STRUCTURES
Volume 92, Issue 4, Pages 996-1008

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2009.09.047

Keywords

Composite; Finite element; Sandwich beam; Viscoelastic; Loss factor; Vibration

Ask authors/readers for more resources

In this article, higher order theory for sandwich beam with composite faces and viscoelastic core is achieved by considering independent transverse displacements on two faces and linear variations through the depth of the beam core. In addition, the effects of Young modulus, rotational inertia and core kinetic energy are considered to modify the Mead & Markus theory that is used frequently for sandwich beam. These assumptions have not been considered together in previous articles. A finite element code is developed for structural response analysis of the free and forced vibration. The obtained results are compared with the corresponding results of previous researches. The effects of impressive parameters including fiber angle, thickness of faces and core thickness on the loss factors and natural frequencies of the beam are examined. Frequency response of the beam for two cases, constant and frequency dependent core shear modulus are obtained. Finally, time response of the beam is presented based on the Newmark method. Obtained results show that, when the core is soft or hard, Mead & Markus theory cannot accurately predict the frequency responses of the system in comparison with the presented theory in this paper; whereas for moderately hard core, both methods lead to the same results. In addition, when the beam is unsymmetrical about its neutral axis, i.e. one face sheet is weaker than the other face sheet, the inaccuracy of the Mead & Markus theory increases, even at low frequencies. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available