4.7 Article

Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers

Journal

COMPOSITE STRUCTURES
Volume 92, Issue 6, Pages 1535-1543

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2009.10.030

Keywords

Functionally graded material beam; Piezoelectric; Thermoelasticity; Static analysis; State space

Ask authors/readers for more resources

This paper presents analytical solution for functionally graded material (FGM) beams integrated with piezoelectric actuator and sensor under an applied electric field and thermo-mechanical load. In FGM host properties is assumed to vary exponentially in thickness direction and the Poisson's ratio is held constant. The hybrid beam is in a state of plane stress and the piezoelectric is composed of orthotropic materials. The beam is simply supported with the bottom surface traction free and zero temperature. By using of state-space method in thickness direction and Fourier series in longitudinal direction, the solution can be made. To verify the accuracy of the present formulation, numerical results for the simple case is compared with results obtained in the published literature. Finally, effects of FGM index, electromechanical coupling, thickness ratio and thermo-mechanical surface boundary condition on the bending behaviour of beam are investigated. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available