4.3 Article

Sorption characteristics of water, oil and diesel in cellulose nanofiber reinforced corn starch resin/ramie fabric composites

Journal

COMPOSITE INTERFACES
Volume 15, Issue 2-3, Pages 281-299

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1163/156855408783810812

Keywords

biodegradable composites; corn starch resin; cellulose nanofiber; water sorption; oil sorption; diesel sorption

Ask authors/readers for more resources

Nowadays, utilisation of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. Fully biodegradable nano 'Green' textile composites have been prepared from cellulose nanofibers reinforced corn starch resin and ramie fabric. Nanofibers having dimensions of approximately I pm long and 20-30 nm in diameter are used in the study. The nanofibers were incorporated in corn starch resin via ball mill mixing using ceramic balls. Textile composites were fabricated by pasting the reinforced resin onto the ramie fabric and by hot compression molding technique. Interactions at the fiber-matrix interface and the compatibility between cellulose and corn starch resin molecules will affect the properties of the system. The well dispersed cellulose nanofibers contribute higher interfacial area and good fiber networking within the matrix resin. This will lead to better barrier properties. Sorption characteristics of water, oil and diesel in the textile composites were analysed and the influence of nano fibers and macro fibers on the transport phenomena was investigated. The kinetics of sorption-diffusion process was investigated. Kinetic parameters such as it, k, diffusion coefficient, permeability, solubility parameter, % swelling index, etc., were analysed. The presence of cellulose nanofibers influences the sorption mechanism. The water sorption mechanism in the nanocomposites was found to exhibit slight deviation from Fickian mode. Structure-property relationships of the nanocomposites were evaluated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available