4.7 Article

Synthetic Nucleic Acid Delivery Systems: Present and Perspectives

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 58, Issue 10, Pages 4091-4130

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm500330k

Keywords

-

Funding

  1. Temple University School of Pharmacy Dean's Office

Ask authors/readers for more resources

Self-assembled synthetic gene delivery systems represent the bottom-up approach to gene delivery and gene silencing, in which scientists are designing novel cationic and procationic amphiphiles that can pack, transport, and deliver nucleic acids to various targets in the body in a controlled manner. These suptamolecular assemblies are safer than viruses, but they are lagging behind them in efficiency. We are presenting recent progress that has narrowed this gap through better understanding the delivery barriers and incorporation of this knowledge in the design of novel synthetic amphiphiles, formulations, and revolutionary screening and optimization processes. Structure properties and structure activity relationships were drawn within each amphiphile class, presenting the cellular and animal models used to generate them. We are also revealing pertinent in vitro/in vivo correlations that emphasize promising amphiphiles and successful formulation optimization efforts for efficient in vivo nucleic acid delivery, together with main organ targets and diseases treatable with these revolutionary technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available