4.6 Article

Enhanced HSP30 and HSP70 accumulation in Xenopus cells subjected to concurrent sodium arsenite and cadmium chloride stress

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpc.2013.07.006

Keywords

Heat shock proteins; Sodium arsenite; Cadmium chloride; Amphibian; Confocal microscopy; Molecular chaperone

Funding

  1. Natural Sciences and Engineering Research Council (NSERC)

Ask authors/readers for more resources

Heat shock proteins (HSPs) are molecular chaperones that aid in protein folding, translocation and in preventing stress-induced protein aggregation. The present study examined the effect of simultaneous sodium arsenite and cadmium chloride treatment on the pattern of HSP30 and HSP70 accumulation in A6 kidney epithelial cells of the frog, Xenopus laevis. Immunoblot analysis revealed that HSP30 and HSP70 accumulation in concurrent stressor treatments were significantly higher than the sum of HSP30 or HSP70 accumulation in individual treatments. This finding suggested a synergistic action between sodium arsenite and cadmium chloride. KNK437 inhibitor studies indicated that the combined stressor-induced accumulation of HSPs may be regulated, at least in part, at the level of transcription. Immunocytochemistry revealed that simultaneous treatment of cells with the two stressors induced HSP30 accumulation primarily in the cytoplasm in a punctate pattern with some dysregulation of F-actin structure. Increased ubiquitinated protein accumulation was observed with combined sodium arsenite and cadmium chloride treatment compared to individual stressors suggesting an impairment of the ubiquitin proteasome degradation system. The addition of a mild heat shock further enhanced the accumulation of HSP30 and HSP70 in response to relatively low concentrations of sodium arsenite plus cadmium chloride. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available