4.4 Article

Heat tolerance and its plasticity in Antarctic fishes

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpa.2010.12.010

Keywords

Antarctica; Critical thermal maximum; Notothenioid; Heat tolerance; Phenotypic plasticity

Funding

  1. U.S. National Science Foundation Office of Polar Programs [NSF OPP-Ant-0231006]
  2. Department of Animal Biology at the University of Illinois Urbana-Champaign

Ask authors/readers for more resources

The adaptive radiation of the Antarctic notothenioid ancestral benthic fish stock within the chronic freezing waters of the Southern Ocean gave rise to five highly cold adapted families. Their stenothermy, first observed from several high-latitude McMurdo Sound species, has been of increasing recent interest given the threat of rising polar water temperatures from global climate change. In this study we determined the heat tolerance in a geographically diverse group of 11 Antarctic species as their critical thermal maximum (CTMax). When acclimatized to their natural freezing water temperatures, environmental CTMaxs ranged from 11.95 to 16.17 degrees C, well below those of fishes endemic to warmer waters. There was a significant regional split, with higher CTMaxs in species from the more northerly and thermally variable Seasonal Pack-ice Zone. When eight of the Antarctic species were warm acclimated to 4 degrees C all showed a significant increase over their environmental CTMaxs, with several showing plasticity comparable in magnitude to some far more eurythermal fishes. When the accrual of heat tolerance during acclimation was followed in three high-latitude McMurdo Sound species, it was found to develop slowly in two of them, which was correlated with their low metabolic rates. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available