4.6 Article

On the Stabilizing Effect of Convection in Three-Dimensional Incompressible Flows

Journal

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS
Volume 62, Issue 4, Pages 501-564

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/cpa.20254

Keywords

-

Funding

  1. National Science Foundation [FRG DMS-0353838, ITR ACI-0204932, DMS-0713670]

Ask authors/readers for more resources

We investigate the stabilizing effect of convection in three-dimensional incompressible Euler and Navier-Stokes equations. The convection term is the main source of nonlinearity for these equations. It is often considered destabilizing although it conserves energy due to the incompressibility condition. In this paper, we show that the convection term together with the incompressibility condition actually has a surprising stabilizing effect. We demonstrate this by constructing a new three-dimensional model that is derived for axisymmetric flows with swirl using a set of new variables. This model preserves almost all the properties of the full three-dimensional Euler or Navier-Stokes equations except for the convection term, which is neglected in our model. If we added the convection term back to our model, we would recover the full Navier-Stokes equations. We will present numerical evidence that seems to support that the three-dimensional model may develop a potential finite time singularity. We will also analyze the mechanism that leads to these singular events in the new three-dimensional model and how the convection term in the full Euler and Navier-Stokes equations destroys such a mechanism, thus preventing the singularity from forming in a finite time. (C) 2008 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available