4.6 Article

Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks

Journal

COMMUNICATIONS OF THE ACM
Volume 54, Issue 10, Pages 95-103

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2001269.2001295

Keywords

-

Funding

  1. DARPA [FA8750-05-2-0249]

Ask authors/readers for more resources

There has been much interest in unsupervised learning of hierarchical generative models such as deep belief networks (DBNs); however, scaling such models to full-sized, high-dimensional images remains a difficult problem. To address this problem, we present the convolutional deep belief network, a hierarchical generative model that scales to realistic image sizes. This model is translation-invariant and supports efficient bottom-up and top-down probabilistic inference. Key to our approach is probabilistic max-pooling, a novel technique that shrinks the representations of higher layers in a probabilistically sound way. Our experiments show that the algorithm learns useful high-level visual features, such as object parts, from unlabeled images of objects and natural scenes. We demonstrate excellent performance on several visual recognition tasks and show that our model can perform hierarchical (bottom-up and top-down) inference over full-sized images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available