4.6 Article

Algorithms in a Robust Hybrid CFD-DEM Solver for Particle-Laden Flows

Journal

COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Volume 9, Issue 2, Pages 297-323

Publisher

GLOBAL SCIENCE PRESS
DOI: 10.4208/cicp.260509.230210a

Keywords

Fluid-particle interaction; particle-laden flow; discrete element method; computational fluid dynamics; hybrid model

Ask authors/readers for more resources

A robust and efficient solver coupling computational fluid dynamics (CFD) with discrete element method (DEM) is developed to simulate particle-laden flows in various physical settings. An interpolation algorithm suitable for unstructured meshes is proposed to translate between mesh-based Eulerian fields and particle-based Lagrangian quantities. The interpolation scheme reduces the mesh-dependence of the averaging and interpolation procedures. In addition, the fluid-particle interaction terms are treated semi-implicitly in this algorithm to improve stability and to maintain accuracy. Finally, it is demonstrated that sub-stepping is desirable for fluid-particle systems with small Stokes numbers. A momentum-conserving sub-stepping technique is introduced into the fluid-particle coupling procedure, so that problems with a wide range of time scales can be solved without resorting to excessively small time steps in the CFD solver. Several numerical examples are presented to demonstrate the capabilities of the solver and the merits of the algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available