4.4 Article

Condition Monitoring of Combustion Processes Through Flame Imaging and Kernel Principal Component Analysis

Journal

COMBUSTION SCIENCE AND TECHNOLOGY
Volume 185, Issue 9, Pages 1400-1413

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00102202.2013.798316

Keywords

Combustion process; Condition monitoring; Digital imaging; Fault detection; Flame monitoring; Hotelling's T-2 statistic; KPCA; Q statistic

Funding

  1. Research Councils UK (RCUK)
  2. EPSRC [EP/G063214/1, EP/F061307/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/G063214/1, EP/F061307/1] Funding Source: researchfish

Ask authors/readers for more resources

This article presents a methodology for the diagnosis of abnormal conditions in a combustion process through flame imaging and kernel principal component analysis (KPCA). A digital imaging system is used to capture real-time flame images and radiation signals, from which flame characteristics such as flame area, brightness, non-uniformity, and oscillation frequency are quantified. These characteristics are used as the variables to establish the KPCA model of the combustion process. With the use of Hotelling's T-2 and Q statistics, the monitoring of abnormal conditions of the combustion process is achieved. Unlike the traditional principal component analysis (PCA) method, the KPCA method is capable of dealing with nonlinear data via nonlinear mapping, which projects the original nonlinear input space into a high-dimensional linear feature space. The effectiveness of the methodology is demonstrated by applying the approach to processing the data obtained on a 9MW(th) heavy oil fired combustion test facility. Experimental results obtained show that the KPCA method outperforms the traditional PCA in discriminating between the normal and abnormal combustion conditions, even in cases where the number of training samples is limited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available