4.7 Article

Integration of nano-Al with Co3O4 nanorods to realize high-exothermic core-shell nanoenergetic materials on a silicon substrate

Journal

COMBUSTION AND FLAME
Volume 159, Issue 6, Pages 2202-2209

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2012.01.022

Keywords

Al/Co3O4 nanoenergetic materials; Silicon substrate; High heat of reaction; Low onset temperature; Nanoscale mixing

Funding

  1. City University of Hong Kong [7008091]

Ask authors/readers for more resources

Nanoenergetic materials (nEMs) have better performance in ignition and energy release rate compared to conventional energetic materials. This makes them have promising applications in actuation, ignition, propulsion, power, fluidic, and electro-explosive devices at the micro and nanoscale. In this study, Co3O4 is used for the first time to achieve novel Al/Co3O4 based nEMs by integrating nano-Al with Co3O4 nanorods that are synthesized by a chemical method. The total heat of reaction, especially the exothermic reaction before Al melting, is greatly enhanced by using Co3O4 pure nanostructures (no microscale film exits). The nEMs are fabricated onto a silicon substrate, which is very convenient to achieve promising functional nanoenergetics-on-a-chip. The fabricated nEMs are confirmed to have nanoscale mixing, very high heat of reaction, and significantly reduced onset temperature of the major exothermic reaction by scanning electron microscopy, differential thermal/thermogravimetric analysis, and differential scanning calorimetry. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available