4.7 Article

Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

Journal

COMBUSTION AND FLAME
Volume 157, Issue 6, Pages 1140-1153

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2010.01.007

Keywords

CO2 capture; Pressurized chemical-looping combustion; Steam coal gasification; Iron ore; Oxygen carrier

Funding

  1. National Natural Science Foundation of China (NSFC) [50606006]
  2. National High Technology Research and Development Program of China [2009AA05Z312]
  3. National Basic Research Program of China [2010CB732206]

Ask authors/readers for more resources

Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO2. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO2 sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasified with 87.2% steam/N-2 mixture and oxidation with 5% 02 in N-2 at 970 degrees C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H-2 and CO2 are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO2 and lower fractions of CO, CH4, and H-2 during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available