4.7 Article

Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate)

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 102, Issue -, Pages 361-370

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2012.08.033

Keywords

Poly(dimethylsiloxane); Surface modification; SI-ATRP; Cationic polymer; Antifouling

Funding

  1. National Natural Science Foundation of China [20975082, 21175107, 31100726]
  2. Ministry of Education of the People's Republic of China [NCET-08-0464]
  3. State Forestry Administration of the People's Republic of China [200904004]
  4. Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry
  5. Northwest AF University

Ask authors/readers for more resources

A quaternized poly(dimethylaminoethyl methacrylate)-grafted poly(dimethylsiloxane) (PDMS) surface (PDMS-QPDMAEMA) was successfully prepared in this study via solution-phase oxidation reaction and surface-initiated atom transfer radical polymerization (SI-ATRP) using dimethylaminoethyl methacrylate (DMAEMA) as initial monomer. PDMS substrates were first oxidized in H2SO4/H2O2 solution to transform the Si-CH3 groups on their surfaces into Si OH groups. Subsequently, a surface initiator for ATRP was immobilized onto the PDMS surface, and DMAEMA was then grafted onto the PDMS surface via copper-mediated ATRP. Finally, the tertiary amino groups of PolyDMAEMA (PDMAEMA) were quaternized by ethyl bromide to provide a cationic polymer brush-modified PDMS surface. Various characterization techniques, including contact angle measurements, attenuated total reflection infrared spectroscopy. and X-ray photoelectron spectroscopy, were used to ascertain the successful grafting of the quaternized PDMAEMA brush onto the PDMS surface. Furthermore, the wettability and stability of the PDMS-QPDMAEMA surface were examined by contact angle measurements. Antifouling properties were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the PDMS-QPDMAEMA surface exhibited durable wettability and stability, as well as significant antifouling properties, compared with the native PDMS and PDMS-PDMAEMA surfaces. In addition, our results present possible uses for the PDMS-QPDMAEMA surface as adhesion barriers and antifouling or functional surfaces in PDMS microfluidics-based biomedical applications. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available