4.7 Article

Fouling mitigation in membrane bioreactors using multivalent cations

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 109, Issue -, Pages 90-96

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2013.03.009

Keywords

Submerged membrane bioreactor (sMBR); Fouling; Cationic coagulants; Bio-flocculation Dewaterability; Settleability

Funding

  1. University of Tehran for this research [8104956/1/02]

Ask authors/readers for more resources

Several cations have been used to study the effect of mineral coagulants on activated sludge properties and membrane fouling in submerged membrane bioreactors (MBRs). The flocculability and settling properties of activated sludge were studied in various concentrations of sodium, potassium, magnesium, calcium, ferrum (in Fe3+ form), and aluminum. Significant effect of cations and their concentrations on different parameters have been analyzed by 2-way ANOVA. Results showed that multivalent cations induce flocculation in bioreactors while monovalent cations have a detrimental effect on flocculability of activated sludge. The ratio of tight bound extracellular polymeric substances (TB-EPSs) to loosely bound (LB-EPSs) increased with concentration of multivalent cations that was in accordance with enhancement of biosorption in high concentration of multivalent cations. Moreover, these cations improved the settleability and dewatering properties of activated sludge. They also mitigated membrane fouling in the MBRs so that calcium and aluminum reduced membrane fouling to nearly 30%. Simple but useful correlations were developed for description of activated sludge properties based on easy measurable parameters that could be used also for estimation of membrane fouling. It was found that the ratio of TB-EPS to LB-EPS and also flocs size distribution are the main parameters affecting membrane fouling. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available