4.7 Article

Enzymatic activation of cellulose acetate membrane for reducing of protein fouling

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 92, Issue -, Pages 334-339

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2011.12.013

Keywords

Enzymatic surface activation; Cellulose acetate membrane; Covalent immobilization; Savinase enzyme; Protein fouling

Ask authors/readers for more resources

In this study, the surface of cellulose acetate (CA) ultrafiltration membrane was activated with serine protease (Savinase) enzyme to reduce protein fouling. Enzyme molecules were covalently immobilized with glutaraldehyde (cross-linking agent) onto the surface of CA membranes. The membrane activation was verified using filtration experiments and morphological analysis. Scanning electron microscopy (SEM) images and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy of the activated membrane when compared with raw membrane were confirmed that the enzyme was immobilized onto the membrane surface. The immobilization efficiencies changed from 13.2 to 41.2% according to the enzyme ratios from 2.5 to 10.0 mg/mL. However, the permeability values decreased from 232 +/- 6 to 121 +/- 4 L/m(2) h bar with increasing enzyme concentration from 2.5 to 10.0 mg/mL. In fouling experiments, bovine serum albumin (BSA) was used as the protein model solution and activated sludge was used as the model biological sludge. Enzyme-activated membranes exhibited good filtration performances and protein rejection efficiencies were compared with raw CA membrane. Also the relative flux reduction (RFR) ratios of membranes were calculated as 97% and 88% for raw CA and enzyme-activated membranes (5 mg/mL savinase), respectively. The membrane activated with Savinase enzyme could be proposed as a surface treatment method before filtration to mitigate protein fouling. (C) 2011 Elsevier By. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available